

# MUTAH UNIVERSITY Faculty of Engineering Department of Computer Engineering



#### **Course Syllabus**

| Course Code | Course Name               | Credits | Contact Hours |
|-------------|---------------------------|---------|---------------|
| 0405112     | Programming for Engineers | 3       | 3 T           |

| INSTRUCTOR/COORDINATOR |                               |  |
|------------------------|-------------------------------|--|
| Name                   | Dr Khaled Suleiman Al-Maaitah |  |
| Email                  | khaled_almaaitah@mutah.edu.jo |  |
| Office Hours           |                               |  |

| TEXTBOOK                     |                                                                                           |  |
|------------------------------|-------------------------------------------------------------------------------------------|--|
| Title                        | C++ PROGRAMMING: PROGRAM DESIGN INCLUDING DATA STRUCTURES                                 |  |
| Author/Year/Edition          | D.S. MALIK./4 <sup>th</sup> Edition                                                       |  |
| Other Supplemental Materials |                                                                                           |  |
| Title                        | Title C++ programming : From Problem Analysis to Program Design / C plus plus programming |  |
| Author/Year/Edition          | D.S. MALIK./ 4 <sup>th</sup> Edition                                                      |  |

#### SPECIFIC COURSE INFORMATION

#### A. Brief Description of the Content of the Course (Catalog Description)

This course is designed to teach students the basics of C++ programming language, which include data types, declaring variables, control (selection and repetition) operators, user-defined functions, strings, arrays, and records. Topics covered contain fundamentals of algorithms, problem-solving steps, and programming concepts with examples and applications using the C++ language. The course prepares students for more advanced programming courses such as Object-Oriented programming and Data structures using the C++ programming language.

#### **B.** Pre-requisites (P) or Co-requisites (C)

Computer Skills 99 (0304099) (**P**)

#### C. Course Type (Required or Elective)

Required

#### SPECIFIC GOALS

#### A. Course Learning Outcomes (CLOs)

By the end of this course, the student should be able to:

**CLO1**: Follow the problem-solving steps and create the solution algorithm [1].

<u>CLO2</u>: Know the basic parts of C++ programs such as data types, declaring variables and readable documentation [1].

<u>CLO3</u>: Use the selection and repetition operators and user-defined functions to write simple and complex C++ programs [2].

<u>CLO4</u>: Use arrays and records programming concepts efficiently as structure data types [2].

### B. Student Learning Outcomes (SOs) Addressed by the Course

| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|---|---|---|---|---|---|
| ✓ | ✓ |   |   |   |   |   |

| BRIEF LIST OF TOPICS TO BE COVERED                          |                 |                  |
|-------------------------------------------------------------|-----------------|------------------|
| List of Topics                                              | No. of<br>Weeks | Contact<br>Hours |
| Introduction to computer hardware and programming languages | 1               | 3                |
| Basic elements of C++ (data types)                          | 2               | 6                |
| Input/Output (format operators)                             | 2               | 6                |
| Control Structures (Selection)                              | 2               | 6                |
| Control Structures (Repetition)                             | 1               | 3                |
| <b>User-Defined Functions (Return value)</b>                | 2               | 6                |
| <b>User-Defined Functions (Void)</b>                        | 1               | 3                |
| Arrays                                                      | 2               | 6                |
| Records (struct)                                            | 1               | 3                |
| Total                                                       | 14              | 42               |

| EVALUATION                                      |                                      |            |
|-------------------------------------------------|--------------------------------------|------------|
| Assessment Tool                                 | <b>Due Date</b>                      | Weight (%) |
| Mid Exam                                        | According to the university calendar | 30         |
| Course Work (Homeworks, Quizzes, Projects,etc.) | One week after being assigned        | 20         |
| Final Exam                                      | According to the university calendar | 50         |

## **ABET's Students Learning Outcomes (Criterion # 3)**

|      | Relationship to program outcomes |                                                                                        |  |
|------|----------------------------------|----------------------------------------------------------------------------------------|--|
| ABET |                                  | Engineering Student Outcomes                                                           |  |
| 1-7  |                                  |                                                                                        |  |
| 1.   | <b>✓</b>                         | an ability to identify, formulate, and solve complex engineering problems by           |  |
|      |                                  | applying principles of engineering, science, and mathematics                           |  |
| 2.   | ✓                                | an ability to apply engineering design to produce solutions that meet specified needs  |  |
|      |                                  | with consideration of public health, safety, and welfare, as well as global, cultural, |  |
|      |                                  | social, environmental, and economic                                                    |  |
| 3.   |                                  | ability to communicate effectively with a range of audiences                           |  |
| 4.   |                                  | an ability to recognize ethical and professional responsibilities in engineering       |  |
|      |                                  | situations and make informed judgments, which must consider the impact of              |  |
|      |                                  | engineering solutions in global, economic, environmental, and societal contexts        |  |
| 5.   |                                  | an ability to function effectively on a team whose members together provide            |  |
|      |                                  | leadership, create a collaborative and inclusive environment, establish goals, plan    |  |
|      |                                  | tasks, and meet objectives.                                                            |  |
| 6.   |                                  | an ability to develop and conduct appropriate experimentation, analyze and interpret   |  |
|      |                                  | data, and use engineering judgment to draw conclusions                                 |  |
| 7.   |                                  | an ability to acquire and apply new knowledge as needed, using appropriate learning    |  |
|      |                                  | strategies                                                                             |  |